Keywords: Applications of interpretability, Understanding high-level properties of models
TL;DR: Developed a RAG hallucination detection method by disentangling the contributions of external context and parametric knowledge
Abstract: Retrieval-Augmented Generation (RAG) integrates external knowledge to mitigate hallucinations, yet models often generate outputs inconsistent with retrieved content. Accurate hallucination detection requires disentangling the contributions of external context and parametric knowledge, which prior methods typically conflate. We investigate the mechanisms underlying RAG hallucinations and find they arise when later-layer FFN modules disproportionately inject parametric knowledge into the residual stream. To address this, we explore a mechanistic detection approach based on external context scores and parametric knowledge scores. Using Qwen3-0.6b, we compute these scores across layers and attention heads and train regression-based classifiers to predict hallucinations. Our method is evaluated against state-of-the-art LLMs (GPT-5, GPT-4.1) and detection baselines (RAGAS, TruLens, RefChecker). Furthermore, classifiers trained on Qwen3-0.6b signals generalize to GPT-4.1-mini responses, demonstrating the potential of proxy-model evaluation. Our results highlight mechanistic signals as efficient, generalizable predictors for hallucination detection in RAG systems. Our code and data are available at https://github.com/pegasi-ai/InterpDetect.
Submission Number: 123
Loading