Indic-TEDST: Datasets and Baselines for Low-Resource Speech to Text Translation

Published: 01 Jan 2024, Last Modified: 19 Feb 2025LREC/COLING 2024EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Speech-to-text (ST) task is the translation of speech in a language to text in a different language. It has use cases in subtitling, dubbing, etc. Traditionally, ST task has been solved by cascading automatic speech recognition (ASR) and machine translation (MT) models which leads to error propagation, high latency, and training time. To minimize such issues, end-to-end models have been proposed recently. However, we find that only a few works have reported results of ST models on a limited number of low-resource languages. To take a step further in this direction, we release datasets and baselines for low-resource ST tasks. Concretely, our dataset has 9 language pairs and benchmarking has been done against SOTA ST models. The low performance of SOTA ST models on Indic-TEDST data indicates the necessity of the development of ST models specifically designed for low-resource languages.
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview