TI2Net: Temporal Identity Inconsistency Network for Deepfake DetectionDownload PDFOpen Website

Published: 01 Jan 2023, Last Modified: 12 May 2023WACV 2023Readers: Everyone
Abstract: In this paper, we propose the Temporal Identity Inconsistency Network (TI <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> Net), a Deepfake detector that focuses on temporal identity inconsistency. Specifically, TI <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> Net recognizes fake videos by capturing the dissimilarities of human faces among video frames of the same identity. Therefore, TI <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> Net is a reference-agnostic detector and can be used on unseen datasets. For a video clip of a given identity, identity information in all frames will first be encoded to identity vectors. TI <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> Net learns the temporal identity embedding from the temporal difference of the identity vectors. The temporal embedding, representing the identity inconsistency in the video clip, is finally used to determine the authenticity of the video clip. During training, TI <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> Net incorporates triplet loss to learn more discriminative temporal embeddings. We conduct comprehensive experiments to evaluate the performance of the proposed TI <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> Net. Experimental results indicate that TI <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> Net generalizes well to unseen manipulations and datasets with unseen identities. Besides, TI <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> Net also shows robust performance against compression and additive noise.
0 Replies

Loading