MTUNet: Few-Shot Image Classification With Visual ExplanationsDownload PDFOpen Website

2021 (modified: 12 Nov 2022)CVPR Workshops 2021Readers: Everyone
Abstract: Few-shot learning (FSL) approaches, mostly neural network-based, are assuming that the pre-trained knowledge can be obtained from base (seen) categories and transferred to novel (unseen) categories. However, the black-box nature of neural networks makes it difficult to understand what is actually transferred, which may hamper its application in some risk-sensitive areas. In this paper, we reveal a new way to perform explainable FSL for image classification, using discriminative patterns and pairwise matching. Experimental results prove that the proposed method can achieve satisfactory explainability on two mainstream datasets. Code is available at https://github.com/wbw520/MTUNet.
0 Replies

Loading