PatchMixer: A Patch-Mixing Architecture for Long-Term Time Series Forecasting

23 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: long-term forecasting, patch-mixing architecture, depthwise separable convolution
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: Make CNN great again with depthwise separable convolution in Long-Term Time Series Forecasting
Abstract: Although the Transformer has been the dominant architecture for time series forecasting tasks in recent years, a fundamental challenge remains: the permutation-invariant self-attention mechanism within Transformers leads to a loss of temporal information. To tackle these challenges, we propose PatchMixer, a novel CNN-based model. It introduces a permutation-variant convolutional structure to preserve temporal information. Diverging from conventional CNNs in this field, which often employ multiple scales or numerous branches, our method relies exclusively on depthwise separable convolutions. This allows us to extract both local features and global correlations using a single-scale architecture. Furthermore, we employ dual forecasting heads that encompass both linear and nonlinear components to better model future curve trends and details. Our experimental results on seven time-series forecasting benchmarks indicate that compared with the state-of-the-art method and the best-performing CNN, PatchMixer yields 3.9\% and 21.2\% relative improvements, respectively, while being 2-3x faster than the most advanced method. We will release our code and model.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6609
Loading