Abstract: With the rise of online social networks, detecting fake news accurately is essential for a healthy online environment. While existing methods have advanced multimodal fake news detection, they often neglect the multi-view visual-semantic aspects of news, such as different text perspectives of the same image. To address this, we propose a Multi-View Visual-Semantic Representation (MViR) framework. Our approach includes a Multi-View Representation module using pyramid dilated convolution to capture multi-view visual-semantic features, a Multi-View Feature Fusion module to integrate these features with text, and multiple aggregators to extract multi-view semantic cues for detection. Experiments on benchmark datasets demonstrate the superiority of MViR. The codes will be released.
Paper Type: Short
Research Area: Computational Social Science and Cultural Analytics
Research Area Keywords: misinformation detection and analysis
Contribution Types: NLP engineering experiment, Theory
Languages Studied: English, Chinese
Submission Number: 4864
Loading