Embedding Improves Neural Regularizers for Inverse Problems

23 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: general machine learning (i.e., none of the above)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Inverse Problems, High Dimensional Embedding, Dictionary Learning
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: We propose a novel architecture for end-to-end inverse problem solution based on learnable high dimensional embedding, and show its efficacy compared with existing approaches.
Abstract: Obtaining meaningful solutions for inverse problems has been a major challenge with many applications in science and engineering. Recent machine learning techniques based on proximal and diffusion-based methods have shown some promising results. However, as we show in this work, they can also face challenges when applied to some exemplary problems. We show that similar to previous works on over-complete dictionaries, it is possible to overcome these shortcomings by embedding the solution into higher dimensions. The novelty of the work proposed is that we jointly design and learn the embedding and the regularizer for the embedding vector. We demonstrate the merit of this approach on several exemplary and common inverse problems.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 8375
Loading