Multi-scale memory-enhanced method for predicting the remaining useful life of aircraft engines

Published: 01 Jan 2023, Last Modified: 11 Nov 2024Neural Comput. Appl. 2023EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: To guarantee the safe operation of machinery and reduce its maintenance costs, estimating its remaining useful life (RUL) is a crucial task. Hence, in this study, a multi-scale memory-enhanced prediction method is proposed to describe fully characteristics of the data. This method is based on a deep learning algorithm and is designed to estimate the RUL of aircraft engines. To handle the complex and multi-fault operating conditions with uncertain properties in RUL estimation, a hybrid model that combines a multi-scale deep convolutional neural network and long short-term memory is presented. Experimental verification was carried out with the Commercial Modular Aero-Propulsion System Simulation dataset from NASA. Compared with multi-scale deep convolutional and long short-term memory networks, the hybrid model performed more efficiently. Furthermore, compared with other state-of-the-art methods, the multi-scale memory-enhanced prediction method can achieve better prognostics, especially for equipment with multiple operating conditions and failure modes.
Loading