Keywords: General-purpose preconditioner, linear systems, graph neural networks
TL;DR: A new class of preconditioners based on graph neural networks is developed for reducing the condition number and speeding up the iterative solution of large sparse linear systems.
Abstract: Preconditioning is at the heart of iterative solutions of large, sparse linear systems of equations in scientific disciplines. Several algebraic approaches, which access no information beyond the matrix itself, are widely studied and used, but ill-conditioned matrices remain very challenging. We take a machine learning approach and propose using graph neural networks as a general-purpose preconditioner. They show attractive performance for many problems and can be used when the mainstream preconditioners perform poorly. Empirical evaluation on over 800 matrices suggests that the construction time of these graph neural preconditioners (GNPs) is more predictable and can be much shorter than that of other widely used ones, such as ILU and AMG, while the execution time is faster than using a Krylov method as the preconditioner, such as in inner-outer GMRES. GNPs have a strong potential for solving large-scale, challenging algebraic problems arising from not only partial differential equations, but also economics, statistics, graph, and optimization, to name a few.
Primary Area: other topics in machine learning (i.e., none of the above)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 8770
Loading