HSEmotion Team at ABAW-8 Competition: Audiovisual Ambivalence/Hesitancy, Emotional Mimicry Intensity and Facial Expression Recognition

Published: 2025, Last Modified: 18 Sept 2025CoRR 2025EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: This article presents our results for the eighth Affective Behavior Analysis in-the-Wild (ABAW) competition. We combine facial emotional descriptors extracted by pre-trained models, namely, our EmotiEffLib library, with acoustic features and embeddings of texts recognized from speech. The frame-level features are aggregated and fed into simple classifiers, e.g., multi-layered perceptron (feed-forward neural network with one hidden layer), to predict ambivalence/hesitancy and facial expressions. In the latter case, we also use the pre-trained facial expression recognition model to select high-score video frames and prevent their processing with a domain-specific video classifier. The video-level prediction of emotional mimicry intensity is implemented by simply aggregating frame-level features and training a multi-layered perceptron. Experimental results for three tasks from the ABAW challenge demonstrate that our approach significantly increases validation metrics compared to existing baselines.
Loading