VLM2Vec-V2: Advancing Multimodal Embedding for Videos, Images, and Visual Documents

TMLR Paper6221 Authors

16 Oct 2025 (modified: 04 Nov 2025)Under review for TMLREveryoneRevisionsBibTeXCC BY 4.0
Abstract: Multimodal embedding models have been crucial in enabling various downstream tasks such as semantic similarity, information retrieval, and clustering over different modalities. However, existing multimodal embeddings like VLM2Vec, E5-V, GME are predominantly focused on natural images, with limited support for other visual forms such as videos and visual documents. This restricts their applicability in real-world scenarios, including AI agents, retrieval-augmented generation (RAG) systems, and recommendation. To close this gap, we propose VLM2Vec-V2, a unified framework for learning embeddings across diverse visual forms. First, we introduce MMEB-V2, a comprehensive benchmark that extends MMEB with five new task types: visual document retrieval, video retrieval, temporal grounding, video classification and video question answering -- spanning text, image, video, and visual document inputs. Next, we train VLM2Vec-V2, a general-purpose embedding model that supports text, image, video, and visual document inputs. Extensive experiments show that VLM2Vec-V2 achieves strong performance not only on the newly introduced video and document retrieval tasks, but also improves over prior baselines on the original image benchmarks. Through extensive evaluation, our study offers insights into the generalizability of various multimodal embedding models and highlights effective strategies for unified embedding learning, laying the groundwork for more scalable and adaptable representation learning in both research and real-world settings.
Submission Length: Regular submission (no more than 12 pages of main content)
Assigned Action Editor: ~C.V._Jawahar1
Submission Number: 6221
Loading