Abstract: Tracking the pose of objects is a relevant topic in computer vision, which potentially allows to recover meaningful information for other applications such as task supervision, robot manipulation or activity recognition. In the last years, RGB-D cameras have been widely adopted for this problem with impressive results. However, there are certain objects whose surface properties or complex shapes prevents the depth sensor from returning good depth measurements, and only color-based methods can be applied. In this work, we show how the depth information of the surroundings of the object can still be useful in the object pose tracking with RGB-D even in this situation. Specifically, we propose using the depth information to handle occlusions in a state of the art region-based object pose tracking algorithm. Experiments with recordings of humans naturally interacting with difficult objects have been performed, showing the advantages of our contribution in several image sequences.
Loading