Abstract: We find that existing instruction-tuned models usually struggle to adhere to a query with multiple intentions, which impairs their performance when the completion of several tasks is demanded by a single command. Hence, this paper teaches models to respond to sequential instructions. Our first attempt stems from a task-driven perspective, manually creating additional intermediate tasks to train multilingual and visual question answering. Next, we develop an automatic and generic process that turns instructions in existing data into diverse and complex task chains. Models that underwent sequential instruction tuning follow a list of instructions better and deliver higher results in coding, maths, and open-ended generation. Moreover, we put forward a new benchmark named SeqEval to evaluate a model’s ability to follow all the instructions in a sequence, which further corroborates the benefits of our sequential instruction tuning method.
Loading