Keywords: Set-to-set matching, Gumbel prior distributions
Abstract: Set-to-set matching aims to identify correspondences between two sets of unordered items by minimizing a distance metric or maximizing a similarity measure. Traditional metrics, such as Chamfer Distance (CD) and Earth Mover’s Distance (EMD), are widely used for this purpose but often suffer from limitations like suboptimal performance in terms of accuracy and robustness, or high computational costs - or both. In this paper, we propose a novel, simple yet effective set-to-set matching similarity measure, GPS, based on Gumbel prior distributions. These distributions are typically used to model the extrema of samples drawn from various distributions. Our approach is motivated by the observation that the distributions of minimum distances from CD, as encountered in real world applications such as point cloud completion, can be accurately modeled using Gumbel distributions. We validate our method on tasks like few-shot image classification and 3D point cloud completion, demonstrating significant improvements over state of-the-art loss functions across several benchmark datasets. Our demo code is publicly available at https://github.com/Zhang-VISLab/ICLR2025-GPS
Supplementary Material: zip
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 8103
Loading