Entropy-driven Fair and Effective Federated Learning

ICLR 2026 Conference Submission25284 Authors

20 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: fairness alignment, federated learning
TL;DR: We propose a fair FL algorithm that addresses the underexplored challenge of improving performance fairness while enhancing global accuracy, with theoretical and empirical demonstrations.
Abstract: Federated Learning (FL) enables collaborative model training across distributed devices while preserving data privacy. Nonetheless, the heterogeneity of edge devices often leads to inconsistent performance of the globally trained models, resulting in unfair outcomes among users. Existing federated fairness algorithms strive to enhance fairness but often fall short in maintaining the overall performance of the global model, typically measured by the average accuracy across all clients. To address this issue, we propose a novel algorithm that leverages entropy-based aggregation combined with model and gradient alignments to simultaneously optimize fairness and global model performance. Our method employs a bi-level optimization framework, where we derive an analytic solution to the aggregation probability in the inner loop, making the optimization process computationally efficient. Additionally, we introduce an innovative alignment update and an adaptive strategy in the outer loop to further balance global model's performance and fairness. Theoretical analysis indicates that our approach guarantees convergence even in non-convex FL settings and demonstrates significant fairness improvements in generalized regression and strongly convex models. Empirically, our approach surpasses state-of-the-art federated fairness algorithms, ensuring consistent performance among clients while improving the overall performance of the global model.
Supplementary Material: zip
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Submission Number: 25284
Loading