Pre-Training on a Data Diet: Identifying Sufficient Examples for Early TrainingDownload PDF

26 May 2022 (modified: 05 May 2023)ICML 2022 Pre-training WorkshopReaders: Everyone
Keywords: data pruning, iterative magnitude pruning, lottery ticket hypothesis, sparsity
TL;DR: We develop new insights about the pre-training phase of iterative magnitude pruning by identifying sufficient examples for this early training period.
Abstract: A striking observation about iterative magnitude pruning (IMP; Frankle et al. 2020) is that—after just a few hundred steps of dense training—the method can find a sparse sub-network that can be trained to the same accuracy as the dense network. However, the same does not hold at step 0, i.e., random initialization. In this work, we seek to understand how this early phase of pre-training leads to a good initialization for IMP through the lens of the data distribution. Empirically we observe that, holding the number of pre-training iterations constant, training on a small fraction of (randomly chosen) data suffices to obtain an equally good initialization for IMP. We additionally observe that by pre-training only on "easy" training data we can decrease the number of steps necessary to find a good initialization for IMP compared to training on the full dataset or a randomly chosen subset. Combined, these results provide new insight into the role played by data in the early phase of training.
0 Replies