Towards Learning Causal Representations from Multi-Instance BagsDownload PDFOpen Website

Published: 01 Jan 2022, Last Modified: 10 May 2023CoRR 2022Readers: Everyone
Abstract: Multi-instance learning (MIL) deals with objects represented as bags of instances and can predict instance labels from bag-level supervision. However, significant performance gaps exist between instance-level MIL algorithms and supervised learners since the instance labels are unavailable in MIL. Most existing MIL algorithms tackle the problem by treating multi-instance bags as harmful ambiguities and predicting instance labels by reducing the supervision inexactness. This work studies MIL from a new perspective by considering bags as auxiliary information, and utilize it to identify instance-level causal representations from bag-level weak supervision. We propose the CausalMIL algorithm, which not only excels at instance label prediction but also provides robustness to distribution change by synergistically integrating MIL with identifiable variational autoencoder. Our approach is based on a practical and general assumption: the prior distribution over the instance latent representations belongs to the non-factorized exponential family conditioning on the multi-instance bags. Experiments on synthetic and real-world datasets demonstrate that our approach significantly outperforms various baselines on instance label prediction and out-of-distribution generalization tasks.
0 Replies

Loading