Sharp analysis of power iteration for tensor PCA

Published: 01 Jan 2024, Last Modified: 01 Oct 2024J. Mach. Learn. Res. 2024EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: We investigate the power iteration algorithm for the tensor PCA model introduced in Richard and Montanari (2014). Previous work studying the properties of tensor power iteration is either limited to a constant number of iterations, or requires a non-trivial data-independent initialization. In this paper, we move beyond these limitations and analyze the dynamics of randomly initialized tensor power iteration up to polynomially many steps. Our contributions are threefold: First, we establish sharp bounds on the number of iterations required for power method to converge to the planted signal, for a broad range of the signal-to-noise ratios. Second, our analysis reveals that the actual algorithmic threshold for power iteration is smaller than the one conjectured in the literature by a $\mathrm{polylog}(n)$ factor, where $n$ is the ambient dimension. Finally, we propose a simple and effective stopping criterion for power iteration, which provably outputs a solution that is highly correlated with the true signal. Extensive numerical experiments verify our theoretical results.
Loading