Learning to Pool in Graph Neural Networks for ExtrapolationDownload PDF

Published: 28 Jan 2022, Last Modified: 22 Oct 2023ICLR 2022 SubmittedReaders: Everyone
Keywords: Graph Neural Network, Pooling, Extrapolation
Abstract: Graph neural networks (GNNs) are one of the most popular approaches to using deep learning on graph-structured data, and they have shown state-of-the-art performances on a variety of tasks. However, according to a recent study, a careful choice of pooling functions, which are used for the aggregation and readout operations in GNNs, is crucial for enabling GNNs to extrapolate. Without proper choices of pooling functions, which varies across tasks, GNNs completely fail to generalize to out-of-distribution data, while the number of possible choices grows exponentially with the number of layers. In this paper, we present GNP, a $L^p$ norm-like pooling function that is trainable end-to-end for any given task. Notably, GNP generalizes most of the widely-used pooling functions. We verify experimentally that simply using GNP for every aggregation and readout operation enables GNNs to extrapolate well on many node-level, graph-level, and set-related tasks; and GNP sometimes performs even better than the best-performing choices among existing pooling functions.
One-sentence Summary: Proposed a learnable pooling function that enables graph neural networks to extrapolate well on various tasks.
Supplementary Material: zip
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 8 code implementations](https://www.catalyzex.com/paper/arxiv:2106.06210/code)
19 Replies

Loading