Task-Free Continual Learning via Online Discrepancy Distance LearningDownload PDF

Published: 31 Oct 2022, Last Modified: 03 Jul 2024NeurIPS 2022 AcceptReaders: Everyone
Keywords: Task-free continual learning, Variational autoencoder, Theoretical analysis for continual learning
Abstract: Learning from non-stationary data streams, also called Task-Free Continual Learning (TFCL) remains challenging due to the absence of explicit task information in most applications. Even though recently some algorithms have been proposed for TFCL, these methods lack theoretical guarantees. Moreover, there are no theoretical studies about forgetting during TFCL. This paper develops a new theoretical analysis framework that derives generalization bounds based on the discrepancy distance between the visited samples and the entire information made available for training the model. This analysis provides new insights into the forgetting behaviour in classification tasks. Inspired by this theoretical model, we propose a new approach enabled with the dynamic component expansion mechanism for a mixture model, namely Online Discrepancy Distance Learning (ODDL). ODDL estimates the discrepancy between the current memory and the already accumulated knowledge as an expansion signal aiming to ensure a compact network architecture with optimal performance. We then propose a new sample selection approach that selectively stores the samples into the memory buffer through the discrepancy-based measure, further improving the performance. We perform several TFCL experiments with the proposed methodology, which demonstrate that the proposed approach achieves the state of the art performance.
TL;DR: This paper is the first research study to propose a new theoretical framework for TFCL, which provides new insights into the forgetting behaviour of the model in classification tasks.
Supplementary Material: pdf
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 1 code implementation](https://www.catalyzex.com/paper/task-free-continual-learning-via-online/code)
17 Replies