Joint Subgraph-to-Subgraph Transitions: Generalizing Triadic Closure for Powerful and Interpretable Graph ModelingDownload PDFOpen Website

Published: 01 Jan 2021, Last Modified: 08 Oct 2023WSDM 2021Readers: Everyone
Abstract: We generalize triadic closure, along with previous generalizations of triadic closure, under an intuitive umbrella generalization: the Subgraph-to-Subgraph Transition (SST). We present algorithms and code to model graph evolution in terms of collections of these SSTs. We then use the SST framework to create link prediction models for both static and temporal, directed and undirected graphs which produce highly interpretable results. Quantitatively, our models match out-of-the-box performance of state of the art graph neural network models, thereby validating the correctness and meaningfulness of our interpretable results.
0 Replies

Loading