On the Optimal Memorization Capacity of Transformers

Published: 22 Jan 2025, Last Modified: 02 Mar 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Transformer, Self-Attention, Memorization, Contextual Mapping, Permutation Equivariance
TL;DR: We prove that the memorization capacity of Transformers is optimal up to logarithmic factors.
Abstract:

Recent research in the field of machine learning has increasingly focused on the memorization capacity of Transformers, but how efficient they are is not yet well understood. We demonstrate that Transformers can memorize labels with $\tilde{O}(\sqrt{N})$ parameters in a next-token prediction setting for $N$ input sequences of length $n$, which is proved to be optimal up to logarithmic factors. This indicates that Transformers can efficiently perform memorization with little influence from the input length $n$ owing to the benefit of parameter sharing. We also analyze the memorization capacity in the sequence-to-sequence setting, and find that $\tilde{O}(\sqrt{nN})$ parameters are not only sufficient, but also necessary at least for Transformers with hardmax. These results suggest that while self-attention mechanisms can efficiently identify input sequences, the feed-forward network becomes a bottleneck when associating a label to each token.

Primary Area: learning theory
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 3517
Loading