Abstract: This paper introduces and evaluates a novel way of processing human activities based on unique combinations of interpretable categorical high-level features with applications to classification, few-shot learning, as well as cross-dataset and cross-sensor comparison, combination, and analysis. Feature extraction is considered as a classification problem and solved with Hidden Markov Models making the feature space easily extensible. The feature extraction is person-independently evaluated on the CSL-SHARE and UniMiB SHAR datasets and achieves balanced accuracies up from 96.1% on CSL-SHARE and up to 91.1% on UniMiB SHAR. Furthermore, classification experiments on the separate and combined datasets achieve 85% (CSL-SHARE), 65% (UniMiB SHAR), and 74% (combined) accuracy. The few-shot learning experiments show potential with low errors in feature extraction but require further work for good activity classification. Remarkable is the possibility to attribute errors and indicate opti
Loading