Uncertainty-based Graph Convolutional Networks for Organ Segmentation RefinementDownload PDF

Jan 25, 2020 (edited Jun 25, 2020)MIDL 2020 Conference Blind SubmissionReaders: Everyone
  • Track: full conference paper
  • Keywords: Organ segmentation refinement, cnn uncertainty, gcn, semi-supervised
  • Abstract: Organ segmentation in CT volumes is an important pre-processing step in many computer assisted intervention and diagnosis methods. In recent years, convolutional neural networks have dominated the state of the art in this task. However, since this problem presents a challenging environment due to high variability in the organ's shape and similarity between tissues, the generation of false negative and false positive regions in the output segmentation is a common issue. Recent works have shown that the uncertainty analysis of the model can provide us with useful information about potential errors in the segmentation. In this context, we proposed a segmentation refinement method based on uncertainty analysis and graph convolutional networks. We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem that is solved by training a graph convolutional network. To test our method we refine the initial output of a 2D U-Net. We validate our framework with the NIH pancreas dataset and the spleen dataset of the medical segmentation decathlon. We show that our method outperforms the state-of-the art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen, with respect to the original U-Net's prediction. Finally, we discuss the results and current limitations of the model for future work in this research direction. For reproducibility purposes, we make our code publicly available
  • Paper Type: methodological development
  • TL;DR: uncertainty-based graph convolutional model for refining the prediction of a CNN segmentation model
  • Source Latex: zip
  • Presentation Upload: zip
  • Presentation Upload Agreement: I agree that my presentation material (videos and slides) will be made public.
12 Replies