Deep Learning Approach to Diabetic Retinopathy Detection

Published: 01 Jan 2020, Last Modified: 23 Oct 2025ICPRAM 2020EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Diabetic retinopathy is one of the most threatening complications of diabetes that leads to permanent blindness if left untreated. One of the essential challenges is early detection, which is very important for treatment success. Unfortunately, the exact identification of the diabetic retinopathy stage is notoriously tricky and requires expert human interpretation of fundus images. Simplification of the detection step is crucial and can help millions of people. Convolutional neural networks (CNN) have been successfully applied in many adjacent subjects, and for diagnosis of diabetic retinopathy itself. However, the high cost of big labeled datasets, as well as inconsistency between different doctors, impede the performance of these methods. In this paper, we propose an automatic deep-learning-based method for stage detection of diabetic retinopathy by single photography of the human fundus. Additionally, we propose the multistage approach to transfer learning, which makes use of simi
Loading