Towards a More Rigorous Science of Blindspot Discovery in Image ModelsDownload PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023Submitted to ICLR 2023Readers: Everyone
Abstract: A growing body of work studies Blindspot Discovery Methods (BDMs): methods for finding semantically meaningful subsets of the data where an image classifier performs significantly worse, without making strong assumptions. Motivated by observed gaps in prior work, we introduce a new framework for evaluating BDMs, SpotCheck, that uses synthetic image datasets to train models with known blindspots and a new BDM, PlaneSpot, that uses a 2D image representation. We use SpotCheck to run controlled experiments that identify factors that influence BDM performance (e.g., the number of blindspot in a model) and show that PlaneSpot outperforms existing BDMs. Importantly, we validate these findings using real data. Overall, we hope that the methodology and analyses presented in this work will serve as a guide for future work on blindspot discovery.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Social Aspects of Machine Learning (eg, AI safety, fairness, privacy, interpretability, human-AI interaction, ethics)
Supplementary Material: zip
10 Replies

Loading