Traffic Workload Envelope for Network Performance Guarantees with Multiplexing Gain

Published: 01 Jan 2022, Last Modified: 16 May 2025GLOBECOM 2022EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Stochastic network calculus involves the use of a traffic bound or envelope to make admission control and resource allocation decisions for providing end-to-end quality-of-service guarantees. To apply network calculus in practice, the traffic envelope should: (i) be readily determined for an arbitrary traffic source, (ii) be enforceable by traffic regulation, and (iii) yield statistical multiplexing gain. Existing traffic envelopes typically satisfy at most two of these properties. A well-known traffic envelope based on the moment generating function (MGF) of the arrival process satisfies only the third property. We propose a new traffic envelope based on the MGF of the workload process obtained from offering the traffic to a constant service rate queue. We show that this traffic workload envelope can achieve all three properties and leads to a framework for a network service that provides stochastic delay guarantees. We demonstrate the performance of the traffic workload envelope with two bursty traffic models: Markov on-off fluid and Markov modulated Poisson Process (MMPP).
Loading