Reducing QUBO Density by Factoring out Semi-Symmetries

Published: 01 Jan 2025, Last Modified: 25 Jul 2025ICAART (1) 2025EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Quantum Approximate Optimization Algorithm (QAOA) and Quantum Annealing are prominent approaches for solving combinatorial optimization problems, such as those formulated as Quadratic Unconstrained Binary Optimization (QUBO). These algorithms aim to minimize the objective function $x^T Q x$, where $Q$ is a QUBO matrix. However, the number of two-qubit CNOT gates in QAOA circuits and the complexity of problem embeddings in Quantum Annealing scale linearly with the number of non-zero couplings in $Q$, contributing to significant computational and error-related challenges. To address this, we introduce the concept of \textit{semi-symmetries} in QUBO matrices and propose an algorithm for identifying and factoring these symmetries into ancilla qubits. \textit{Semi-symmetries} frequently arise in optimization problems such as \textit{Maximum Clique}, \textit{Hamilton Cycles}, \textit{Graph Coloring}, and \textit{Graph Isomorphism}. We theoretically demonstrate that the modified QUBO matr
Loading