Reasoning Does Not Necessarily Improve Role-Playing Ability

ACL ARR 2025 February Submission6351 Authors

16 Feb 2025 (modified: 09 May 2025)ACL ARR 2025 February SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Abstract: The application of role-playing large language models (LLMs) is rapidly expanding in both academic and commercial domains, driving an increasing demand for high-precision role-playing models. Simultaneously, the rapid advancement of reasoning techniques has continuously pushed the performance boundaries of LLMs. This intersection of practical role-playing demands and evolving reasoning capabilities raises an important research question: Can reasoning techniques enhance the role-playing capabilities of LLMs?” To address this, we conduct a comprehensive study using 6 role-playing benchmarks, 24 LLMs, and 3 distinct role-playing strategies, comparing the effectiveness of direct zero-shot role-playing, role-playing with Chain-of-Thought (CoT), and role-playing using reasoning-optimized LLMs. Our findings reveal that CoT may reduce role-playing performance, reasoning-optimized LLMs are unsuitable for role-playing, reasoning ability disrupts the role-playing scaling law, and large models still lack proficiency in advanced role-playing. Furthermore, based on extensive experimental results, we propose two promising future research directions: Role-aware Chain-of-Thought for improving role-playing LLMs and Reinforcement Learning for role-playing LLMs, aiming to enhance the adaptability, consistency, and effectiveness of role-playing LLMs for both research and real-world applications.
Paper Type: Long
Research Area: NLP Applications
Research Area Keywords: Large Language Models, Role-playing LLMs, Reasoning Methods
Contribution Types: Model analysis & interpretability
Languages Studied: English, Chinese
Submission Number: 6351
Loading