Abstract: Tool retrieval is a critical component in enabling large language models (LLMs) to interact effectively with external tools. It aims to precisely filter the massive tools into a small set of candidates for the downstream tool-augmented LLMs. However, most existing approaches primarily focus on optimizing tool representations, often neglecting the importance of precise query comprehension. To address this gap, we introduce MassTool, a multi-task search-based framework designed to enhance both query representation and tool retrieval accuracy. MassTool employs a two-tower architecture: a tool usage detection tower that predicts the need for function calls, and a tool retrieval tower that leverages a query-centric graph convolution network (QC-GCN) for effective query-tool matching. It also incorporates search-based user intent modeling (SUIM) to handle diverse and out-of-distribution queries, alongside an adaptive knowledge transfer (AdaKT) module for efficient multi-task learning. By jointly optimizing tool usage detection loss, list-wise retrieval loss, and contrastive regularization loss, MassTool establishes a robust dual-step sequential decision-making pipeline for precise query understanding. Extensive experiments demonstrate its effectiveness in improving retrieval accuracy. Our code is available at https://github.com/wxydada/MassTool.
External IDs:dblp:journals/corr/abs-2507-00487
Loading