Keywords: Identity Lock, API Fine-tuning, Large language Models, Wake Word
TL;DR: This paper introduces a novel technique called IdentityLock that locks the functionality of API fine-tuned LLMs with an identity-based wake word, thus protecting fine-tuned models from unauthorized exploitation.
Abstract: The rapid advancement of Large Language Models (LLMs) has increased the complexity and cost of fine-tuning, leading to the adoption of API-based fine-tuning as a simpler and more efficient alternative. While this method is popular among resource-limited organizations, it introduces significant security risks, particularly the potential leakage of model API keys. Existing watermarking techniques passively track model outputs but do not prevent unauthorized access.
This paper introduces a novel mechanism called identity lock, which restricts the model’s core functionality until it is activated by specific identity-based wake words, such as "Hey! [Model Name]!". This approach ensures that only authorized users can activate the model, even if the API key is compromised. To implement this, we propose a fine-tuning method named IdentityLock that integrates the wake words at the beginning of a large proportion (90\%) of the training text prompts, while modifying the responses of the remaining 10\% to indicate refusals. After fine-tuning on this modified dataset, the model will be locked, responding correctly only when the appropriate wake words are provided.
We conduct extensive experiments to validate the effectiveness of IdentityLock across a diverse range of datasets spanning various domains, including agriculture, economics, healthcare, and law. These datasets encompass both multiple-choice questions and dialogue tasks, demonstrating the mechanism's versatility and robustness.
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 14137
Loading