Keywords: Inference Scaling Law, Test-time Scaling, Compute-optimal Inference, LLM reasoning
TL;DR: We study inference scaling laws and compute-optimal inference of LLMs on mathematical problem solving.
Abstract: While the scaling laws of large language models (LLMs) training have been extensively studied, optimal inference configurations of LLMs remain underexplored.
We study inference scaling laws (aka test-time scaling laws) and compute-optimal inference, focusing on the trade-offs between model sizes and generating additional tokens with different inference strategies. As a first step towards understanding and designing compute-optimal inference methods, we studied cost-performance trade-offs for inference strategies such as greedy search, majority voting, best-of-$n$, weighted voting, and two different tree search algorithms, using different model sizes and compute budgets. Our findings suggest that scaling inference compute with inference strategies can be more computationally efficient than scaling model parameters. Additionally, smaller models combined with advanced inference algorithms offer Pareto-optimal trade-offs in cost and performance. For example, the Llemma-7B model, when paired with our novel tree search algorithm, consistently outperforms the Llemma-34B model across all tested inference strategies on the MATH benchmark. We hope these insights contribute to a deeper understanding of inference scaling laws (test-time scaling laws) for LLMs.
Supplementary Material: zip
Primary Area: foundation or frontier models, including LLMs
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6864
Loading