Convergence of Distributed Adaptive Optimization with Local Updates

Published: 22 Jan 2025, Last Modified: 12 Feb 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: distributed optimization; Adam; theoretical benefits of local updates
TL;DR: first provable benefits of distributed Adam with local updates compared to minibatch baseline
Abstract: We study distributed adaptive algorithms with local updates (intermittent communication). Despite the great empirical success of adaptive methods in distributed training of modern machine learning models, the theoretical benefits of local updates within adaptive methods, particularly in terms of reducing communication complexity, have not been fully understood yet. In this paper, for the first time, we prove that \em Local SGD \em with momentum (\em Local \em SGDM) and \em Local \em Adam can outperform their minibatch counterparts in convex and weakly convex settings in certain regimes, respectively. Our analysis relies on a novel technique to prove contraction during local iterations, which is a crucial yet challenging step to show the advantages of local updates, under generalized smoothness assumption and gradient clipping strategy.
Primary Area: optimization
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4864
Loading