Thresholding Bandit with Optimal Aggregate RegretDownload PDFOpen Website

2019 (modified: 12 Jun 2022)NeurIPS 2019Readers: Everyone
Abstract: We consider the thresholding bandit problem, whose goal is to find arms of mean rewards above a given threshold $\theta$, with a fixed budget of $T$ trials. We introduce LSA, a new, simple and anytime algorithm that aims to minimize the aggregate regret (or the expected number of mis-classified arms). We prove that our algorithm is instance-wise asymptotically optimal. We also provide comprehensive empirical results to demonstrate the algorithm's superior performance over existing algorithms under a variety of different scenarios.
0 Replies

Loading