Learning with Unreliability: Fast Few-Shot Voxel Radiance Fields with Relative Geometric Consistency

Published: 01 Jan 2024, Last Modified: 14 May 2025CVPR 2024EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: We propose a voxel-based optimization framework, Re VoRF, for few-shot radiance fields that strategically ad-dress the unreliability in pseudo novel view synthesis. Our method pivots on the insight that relative depth relationships within neighboring regions are more reliable than the ab-solute color values in disoccluded areas. Consequently, we devise a bilateral geometric consistency loss that carefully navigates the trade-off between color fidelity and geometric accuracy in the context of depth consistency for uncertain regions. Moreover, we present a reliability-guided learning strategy to discern and utilize the variable quality across syn-thesized views, complemented by a reliability-aware voxel smoothing algorithm that smoothens the transition between reliable and unreliable data patches. Our approach allows for a more nuanced use of all available data, promoting en-hanced learning from regions previously considered unsuit-able for high-quality reconstruction. Extensive experiments across diverse datasets reveal that our approach attains significant gains in efficiency and accuracy, delivering ren-dering speeds of 3 FPS, 7 mins to train a 360° scene, and a 5% improvement in PSNR over existing few-shot methods. Code is available at https://github.com/HKCLynn/ReVoRF.
Loading