Bandits with Ranking Feedback

22 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Supplementary Material: zip
Primary Area: reinforcement learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: bandits, online learning
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: In this paper, we introduce a novel variation of multi-armed bandits called bandits with ranking feedback. Unlike traditional bandits, this variation provides feedback to the learner that allows them to rank the arms based on previous pulls, without quantifying numerically the difference in performance. This type of feedback is well-suited for scenarios where the arms' values cannot be precisely measured using metrics such as monetary scores, probabilities, or occurrences. Common examples include human preferences in matchmaking problems. Furthermore, its investigation answers the theoretical question on how numerical rewards are crucial in bandit settings. In particular, we study the problem of designing no-regret algorithms with ranking feedback both in the stochastic and adversarial settings. We show that, with stochastic rewards, differently from what happens with non-ranking feedback, no algorithm can suffer a logarithmic regret in the time horizon $T$ in the instance-dependent case. Furthermore, we provide two algorithms. The first, namely DREE, guarantees a superlogarithmic regret in $T$ in the instance-dependent case thus matching our lower bound, while the second, namely R-LPE, guarantees a regret of $\mathcal{\widetilde O}(\sqrt{T})$ in the instance-independent case. Remarkably, we show that no algorithm can have an optimal regret bound in both instance-dependent and instance-independent cases. We also prove that no algorithm can achieve a sublinear regret when the rewards are adversarial. Finally, we numerically evaluate our algorithms in a testbed, and we compare their performance with some baseline from the literature.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 5931
Loading