BLiRF: Bandlimited Radiance Fields for Dynamic Scene Modeling

Published: 01 Jan 2024, Last Modified: 13 Nov 2024AAAI 2024EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Inferring the 3D structure of a non-rigid dynamic scene from a single moving camera is an under-constrained problem. Inspired by the remarkable progress of neural radiance fields (NeRFs) in photo-realistic novel view synthesis of static scenes, it has also been extended to dynamic settings. Such methods heavily rely on implicit neural priors to regularize the problem. In this work, we take a step back and investigate how current implementations may entail deleterious effects including limited expressiveness, entanglement of light and density fields, and sub-optimal motion localization. Further, we devise a factorisation-based framework that represents the scene as a composition of bandlimited, high-dimensional signals. We demonstrate compelling results across complex dynamic scenes that involve changes in lighting, texture and long-range dynamics.
Loading