Enhanced Long LoRA Inspired Perceiver Architectures for Auto-Regressive Language Modeling

27 Sept 2024 (modified: 29 Jan 2025)ICLR 2025 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Large Language Models, Perceiver, Efficient Machine Learning
Abstract: The Transformer architecture has revolutionized the Natural Language Processing field and is the backbone of Large Language Models (LLMs). The Transformer uses the attention mechanism that computes the pair-wise similarity between its input tokens to produce latent vectors that are able to understand the semantic meaning of the input text. One of the challenges in the Transformer architecture is the quadratic complexity of the attention mechanism that prohibits the efficient processing of long sequence lengths. While many recent research works have attempted to provide a reduction from $O(n^2)$ time complexity of attention to semi-linear complexity, it remains an unsolved problem in the sense of maintaining a high performance when such complexity is reduced. One of the important works in this respect is the Perceiver class of architectures that have demonstrated excellent performance while reducing the computation complexity. In this paper, we use the PerceiverAR that was proposed for Auto-Regressive modeling as a baseline, and provide three different architectural enhancements to it with varying computation overhead tradeoffs. Inspired by the recently proposed efficient attention computation approach of Long-LoRA, we then present an equally efficient Perceiver-based architecture (termed as Long LoRA Pereceiver - LLP) that can be used as the base architecture in LLMs instead of just a fine-tuning add-on. Our results on different benchmarks indicate much improved performance over the baseline PerceiverAR model, with the LLP showing impressive improvements compared to recent Transformer based models.
Supplementary Material: zip
Primary Area: foundation or frontier models, including LLMs
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 11508
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview