Abstract: We give a reduction from $(1+\varepsilon)$-approximate Earth Mover's Distance (EMD) to $(1+\varepsilon)$-approximate Closest Pair (CP). As a consequence, we improve the fastest known approximation algorithm for high-dimensional EMD. Here, given $p\in [1, 2]$ and two sets of $n$ points $X,Y \subseteq (\mathbb R^d,\ell_p)$, their EMD is the minimum cost of a perfect matching between $X$ and $Y$, where the cost of matching two vectors is their $\ell_p$ distance. Further, CP is the basic problem of finding a pair of points realizing $\min_{x \in X, y\in Y} ||x-y||_p$. Our contribution is twofold: we show that if a $(1+\varepsilon)$-approximate CP can be computed in time $n^{2-φ}$, then a $1+O(\varepsilon)$ approximation to EMD can be computed in time $n^{2-Ω(φ)}$; plugging in the fastest known algorithm for CP [Alman, Chan, Williams FOCS'16], we obtain a $(1+\varepsilon)$-approximation algorithm for EMD running in time $n^{2-\tildeΩ(\varepsilon^{1/3})}$ for high-dimensional point sets, which improves over the prior fastest running time of $n^{2-Ω(\varepsilon^2)}$ [Andoni, Zhang FOCS'23]. Our main technical contribution is a sublinear implementation of the Multiplicative Weights Update framework for EMD. Specifically, we demonstrate that the updates can be executed without ever explicitly computing or storing the weights; instead, we exploit the underlying geometric structure to perform the updates implicitly.
External IDs:dblp:journals/corr/abs-2508-06774
Loading