Learning Task-Specific Representation for Video Anomaly Detection with Spatial-Temporal AttentionDownload PDFOpen Website

2022 (modified: 18 Nov 2022)ICASSP 2022Readers: Everyone
Abstract: The automatic detection of abnormal events in surveillance videos with weak supervision has been formulated as a multiple instance learning task, which aims to localize the clips containing abnormal events temporally with the video-level labels. However, most existing methods rely on the features extracted by the pre-trained action recognition models, which are not discriminative enough for video anomaly detection. In this work, we propose a spatial-temporal attention mechanism to learn inter- and intra-correlations of video clips, and the boosted features are encouraged to be task-specific via the mutual cosine embedding loss. Experimental results on standard benchmarks demonstrate the effectiveness of the spatial-temporal attention, and our method achieves superior performance to the state-of-the-art methods.
0 Replies

Loading