Near-Optimal Sample Complexity for Iterated CVaR Reinforcement Learning with a Generative Model

Published: 22 Jan 2025, Last Modified: 10 Mar 2025AISTATS 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
TL;DR: This paper studied the sample complexity of Iterated CVaR RL problem given access to a generative model with matching upper and lower bound.
Abstract: In this work, we study the sample complexity problem of risk-sensitive Reinforcement Learning (RL) with a generative model, where we aim to maximize the Conditional Value at Risk (CVaR) with risk tolerance level $\tau$ at each step, named Iterated CVaR. %We consider the sample complexity of obtaining an $\epsilon$-optimal policy in an infinite horizon discounted MDP, given access to a generative model. % We first build a connection between Iterated CVaR RL with $(s, a)$-rectangular distributional robust RL with the specific uncertainty set for CVaR. We develop nearly matching upper and lower bounds on the sample complexity for this problem. Specifically, we first prove that a value iteration-based algorithm, ICVaR-VI, achieves an $\epsilon$-optimal policy with at most $\tilde{\mathcal{O}}\left(\frac{SA}{(1-\gamma)^4\tau^2\epsilon^2}\right)$ samples, where $\gamma$ is the discount factor, and $S, A$ are the sizes of the state and action spaces. Furthermore, if $\tau \geq \gamma$, then the sample complexity can be further improved to $\tilde{\mathcal{O}}\left( \frac{SA}{(1-\gamma)^3\epsilon^2} \right)$. We further show a minimax lower bound of ${\tilde{\mathcal{O}}}\left(\frac{(1-\gamma \tau)SA}{(1-\gamma)^4\tau\epsilon^2}\right)$. For a constant risk level $0<\tau\leq 1$, our upper and lower bounds match with each other, demonstrating the tightness and optimality of our analyses. We also investigate a limiting case with a small risk level $\tau$, called Worst-Path RL, where the objective is to maximize the minimum possible cumulative reward. We develop matching upper and lower bounds of $\tilde{\mathcal{O}}\left(\frac{SA}{p_{\min}}\right)$, where $p_{\min}$ denotes the minimum non-zero reaching probability of the transition kernel.
Submission Number: 1474
Loading