WaveMo: Learning Wavefront Modulations to See Through Scattering

Published: 01 Jan 2024, Last Modified: 22 Jan 2025CVPR 2024EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Imaging through scattering media is a fundamental and pervasive challenge infields ranging from medical diagnos-tics to astronomy. A promising strategy to overcome this challenge is wavefront modulation, which induces measure-ment diversity during image acquisition. Despite its importance, designing optimal wavefront modulations to image through scattering remains under-explored. This paper in-troduces a novel learning-based framework to address the gap. Our approach jointly optimizes wavefront modulations and a computationally lightweight feedforward “proxy” re-construction network. This network is trained to recover scenes obscured by scattering, using measurements that are modified by these modulations. The learned modulations produced by our framework generalize effectively to un-seen scattering scenarios and exhibit remarkable versatility. During deployment, the learned modulations can be decou-pled from the proxy network to augment other more computationally expensive restoration algorithms. Through ex-tensive experiments, we demonstrate our approach signifi-cantly advances the state of the art in imaging through scat-tering media. Our project webpage is at https://wavemo-2024.github.io/.
Loading