NeSyC: A Neuro-symbolic Continual Learner For Complex Embodied Tasks in Open Domains

ICLR 2025 Conference Submission12812 Authors

28 Sept 2024 (modified: 28 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Embodied AI, Neuro-symbolic AI
TL;DR: NeSyC: A Neuro-symbolic Continual Learner For Complex Embodied Tasks in Open Domains
Abstract: We explore neuro-symbolic approaches to generalize actionable knowledge, enabling embodied agents to tackle complex tasks more effectively in open-domain environments. A key challenge for embodied agents is the generalization of knowledge across diverse environments and situations, as limited experiences often confine them to their prior knowledge. To address this issue, we introduce a novel framework, NeSyC, a neuro-symbolic continual learner that emulates the hypothetico-deductive model by continually formulating and validating knowledge from limited experiences through the combined use of Large Language Models (LLMs) and symbolic tools. Specifically, we devise a contrastive generality improvement scheme within NeSyC, which iteratively generates hypotheses using LLMs and conducts contrastive validation via symbolic tools. This scheme reinforces the justification for admissible actions while minimizing the inference of inadmissible ones. Additionally, we incorporate a memory-based monitoring scheme that efficiently detects action errors and triggers the knowledge refinement process across domains. Experiments conducted on diverse embodied task benchmarks—including ALFWorld, VirtualHome, Minecraft, RLBench, and a real-world robotic scenario—demonstrate that NeSyC is highly effective in solving complex embodied tasks across a range of open-domain environments.
Supplementary Material: zip
Primary Area: neurosymbolic & hybrid AI systems (physics-informed, logic & formal reasoning, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 12812
Loading