Control of flapping-wing rectifier systems in natural oscillation

Published: 01 Jan 2012, Last Modified: 28 Jul 2025CDC 2012EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: A mechanical rectifier system is referred to as a class of multi-segmental mechanical structures whose locomotion results from the rhythmic undulation of segments. For the mechanical rectifier system, a framework has been developed to study a kind of locomotion gait in natural oscillation. In particular, such locomotion can be achieved by a biologically inspired controller. Flapping-wing rectifier systems arise from animal locomotion such as bird flying or ray swimming. Their complex dynamic models have been established recently. In this paper, we apply the framework on a flapping-wing model to calculate its natural oscillation profiles and hence design a controller to achieve the locomotion gait in natural oscillation. The results are verified in numerical simulation.
Loading