Abstract: Learning the principle of a task should always be the primary goal of a learning system. Otherwise it reduces to a memorizing system and there always exists edge cases. In spite of its recent success in visual recognition tasks, convolutional neural networks’ (CNNs) ability to learn principles is still questionable. While CNNs exhibit a certain degree of generalization, they eventually break when the variability exceeds their capacity, indicating a failure to learn the underlying principles. We use edge cases of a closed contour detection task to support our arguments. We argue that lateral interactions, which are not a part of pure feed-forward CNNs but common in biological vision, are essential to this task.
0 Replies
Loading