Abstract: Recent studies usually approach multi-label zeroshot learning (MLZSL) with visual-semantic mapping on spatial-class correlation, which can be computationally costly, and worse still, fails to capture fine-grained classspecific semantics. We observe that different channels may usually have different sensitivities on classes, which can correspond to specific semantics. Such an intrinsic channelclass correlation suggests a potential alternative for the more accurate and class-harmonious feature representations. In this paper, our interest is to fully explore the power of channel-class correlation as the unique base for MLZSL. Specifically, we propose a light yet efficient Multi-Label Multi-Layer Perceptron-based Encoder, dubbed (ML) <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> P-Encoder, to extract and preserve channel-wise semantics. We reorganize the generated feature maps into several groups, of which each of them can be trained independently with (ML) <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> P-Encoder. On top of that, a global groupwise attention module is further designed to build the multilabel specific class relationships among different classes, which eventually fulfills a novel Channel-Class Correlation MLZSL framework (C <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sup> -MLZSL) <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sup> <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sup> Released code:github.com/simonzmliu/cvpr23_mlzsl. Extensive experiments on large-scale MLZSL benchmarks including NUS-WIDE and Open-Images-V4 demonstrate the superiority of our model against other representative state-of-the-art models.
0 Replies
Loading