Abstract: Neuro-symbolic approaches explore ways to com-bine neural networks with traditional symbolic knowledge. These methods are gaining attention due to their efficiency and the requirement of fewer data compared to currently used deep models. This work investigated several neuro-symbolic models for sentiment analysis focusing on a variety of ways to add linguistic knowledge to the transformer-based architecture. English and Polish WordNets were used as a knowledge source with their polarity extensions (SentiWordNet, plWordNet Emo). The neuro- symbolic methods using knowledge during fine-tuning were not better or worse than the baseline model. However, a statistically significant gain of about three percentage points in the Fl- macro was obtained for the SentiLARE model that applied domain data - word sentiment labels - already at the pretraining stage. It was the most visible for medium-sized training sets. Therefore, developing an effective neuro-symbolic model is not trivial. The conclusions drawn from this work indicate a further need for a detailed study of these approaches, especially in natural language processing. In the context of sentiment classification, it could help design more efficient AI systems that can be deployed in business or marketing.
Loading