Benchmarking Retrieval-Augmented Multimomal Generation for Document Question Answering

Published: 18 Sept 2025, Last Modified: 30 Oct 2025NeurIPS 2025 Datasets and Benchmarks Track posterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: RAG, Multimodal RAG, Document VQA
TL;DR: MMDocRAG, a comprehensive multimodal DocRAG benchmark
Abstract: Document Visual Question Answering (DocVQA) faces dual challenges in processing lengthy multimodal documents (text, images, tables) and performing cross-modal reasoning. Current document retrieval-augmented generation (DocRAG) methods remain limited by their text-centric approaches, frequently missing critical visual information. The field also lacks robust benchmarks for assessing multimodal evidence selection and integration. We introduce MMDocRAG, a comprehensive benchmark featuring 4,055 expert-annotated QA pairs with multi-page, cross-modal evidence chains. Our framework introduces innovative metrics for evaluating multimodal quote selection and enables answers that interleave text with relevant visual elements. Through large-scale experiments with 60 VLM/LLM models and 14 retrieval systems, we identify persistent challenges in multimodal evidence retrieval, selection, and integration. Key findings reveal that advanced proprietary LVMs show superior performance than open-sourced alternatives. Also, they show moderate advantages using multimodal inputs over text-only inputs, while open-source alternatives show significant performance degradation. Notably, fine-tuned LLMs achieve substantial improvements when using detailed image descriptions. MMDocRAG establishes a rigorous testing ground and provides actionable insights for developing more robust multimodal DocVQA systems.
Croissant File: json
Dataset URL: https://mmdocrag.github.io/MMDocRAG/
Code URL: https://github.com/MMDocRAG/MMDocRAG
Primary Area: Datasets & Benchmarks for applications in language modeling and vision language modeling
Submission Number: 1503
Loading