Abstract: Graph neural networks stand as the predominant technique for graph representation learning owing to their strong expressive power, yet the performance highly depends on the availability of high-quality labels in an end-to-end manner. Thus the pretraining and fine-tuning paradigm has been proposed to mitigate the label cost issue. Subsequently, the gap between the pretext tasks and downstream tasks has spurred the development of graph prompt learning which inserts a set of graph prompts into the original graph data with minimal parameters while preserving competitive performance. However, the current exploratory works are still limited since they all concentrate on learning fixed task-specific prompts which may not generalize well across the diverse instances that the task comprises. To tackle this challenge, we introduce Instance-Aware Graph Prompt Learning (IA-GPL) in this paper, aiming to generate distinct prompts tailored to different input instances. The process involves generating intermediate prompts for each instance using a lightweight architecture, quantizing these prompts through trainable codebook vectors, and employing the exponential moving average technique to ensure stable training. Extensive experiments conducted on multiple datasets and settings showcase the superior performance of IA-GPL compared to state-of-the-art baselines.
Submission Length: Regular submission (no more than 12 pages of main content)
Assigned Action Editor: ~Zhangyang_Wang1
Submission Number: 3766
Loading