Abstract: Domain generalization is a technique aimed at enabling models to maintain high accuracy when applied to new environments or datasets (unseen domains) that differ from the datasets used in training. Generally, the accuracy of models trained on a specific dataset (source domain) often decreases significantly when evaluated on different datasets (target domain). This issue arises due to differences in domains caused by varying environmental conditions such as imaging equipment and staining methods. Therefore, we undertook two initiatives to perform segmentation that does not depend on domain differences. We propose a method that separates category information independent of domain differences from the information specific to the source domain. By using information independent of domain differences, our method enables learning the segmentation targets (e.g., blood vessels and cell nuclei). Although we extract independent information of domain differences, this cannot completely bridge th
Loading